• Thudichum JLW. A treatise on the chemical constitution of the brain: Bailliere, Tindall, and Cox, London; 1884.

  • Chiricozzi E, Aureli M, Mauri L, Di Biase E, Lunghi G, Fazzari M, et al. Glycosphingolipids. Adv Exp Med Biol. 2021;1325:61–102.

    CAS 
    PubMed 

    Google Scholar
     

  • Schnaar RL. The biology of gangliosides. Adv Carbohydr Chem Biochem. 2019;76:113–48.

    PubMed 

    Google Scholar
     

  • Inokuchi JI, Inamori KI, Kabayama K, Nagafuku M, Uemura S, Go S, et al. Biology of GM3 ganglioside. Prog Mol Biol Transl Sci. 2018;156:151–95.

    CAS 
    PubMed 

    Google Scholar
     

  • Ishii A, Ohta M, Watanabe Y, Matsuda K, Ishiyama K, Sakoe K, et al. Expression cloning and functional characterization of human cDNA for ganglioside GM3 synthase. J Biol Chem. 1998;273:31652–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Nagata Y, Yamashiro S, Yodoi J, Lloyd KO, Shiku H, Furukawa K. Expression cloning of beta 1,4 N-acetylgalactosaminyltransferase cDNAs that determine the expression of GM2 and GD2 gangliosides. J Biol Chem. 1992;267:12082–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Harlalka GV, Lehman A, Chioza B, Baple EL, Maroofian R, Cross H, et al. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain. 2013;136:3618–24.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boukhris A, Schule R, Loureiro JL, Lourenco CM, Mundwiller E, Gonzalez MA, et al. Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am J Hum Genet. 2013;93:118–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edvardson S, Baumann AM, Muhlenhoff M, Stephan O, Kuss AW, Shaag A, et al. West syndrome caused by ST3Gal-III deficiency. Epilepsia. 2013;54:e24–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Hu H, Eggers K, Chen W, Garshasbi M, Motazacker MM, Wrogemann K, et al. ST3GAL3 mutations impair the development of higher cognitive functions. Am J Hum Genet. 2011;89:407–14.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC, Reinkensmeier G, et al. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet. 2004;36:1225–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Bowser LE, Young M, Wenger OK, Ammous Z, Brigatti KW, Carson VJ, et al. Recessive GM3 synthase deficiency: Natural history, biochemistry, and therapeutic frontier. Mol Genet Metab. 2019;126:475–88.

    CAS 
    PubMed 

    Google Scholar
     

  • Lee JS, Yoo Y, Lim BC, Kim KJ, Song J, Choi M, et al. GM3 synthase deficiency due to ST3GAL5 variants in two Korean female siblings: Masquerading as Rett syndrome-like phenotype. Am J Med Genet A. 2016;170:2200–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X, Bartel F, et al. A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet. 2014;23:418–33.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang H, Bright A, Xin B, Bockoven JR, Paller AS. Cutaneous dyspigmentation in patients with ganglioside GM3 synthase deficiency. Am J Med Genet A. 2013;161A:875–9.

    PubMed 

    Google Scholar
     

  • Fragaki K, Ait-El-Mkadem S, Chaussenot A, Gire C, Mengual R, Bonesso L, et al. Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. Eur J Hum Genet. 2013;21:528–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe S, Lei M, Nakagawa E, Takeshita E, Inamori KI, Shishido F, et al. Neurological insights on two siblings with GM3 synthase deficiency due to novel compound heterozygous ST3GAL5 variants. Brain Dev. 2023;45:270–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Paulson JC, Rademacher C. Glycan terminator. Nat Struct Mol Biol. 2009;16:1121–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gordon-Lipkin E, Cohen JS, Srivastava S, Soares BP, Levey E, Fatemi A. ST3GAL5-related disorders: a deficiency in ganglioside metabolism and a genetic cause of intellectual disability and choreoathetosis. J Child Neurol. 2018;33:825–31.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Indellicato R, Parini R, Domenighini R, Malagolini N, Iascone M, Gasperini S, et al. Total loss of GM3 synthase activity by a normally processed enzyme in a novel variant and in all ST3GAL5 variants reported to cause a distinct congenital disorder of glycosylation. Glycobiology. 2019;29:229–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Heide S, Jacquemont ML, Cheillan D, Renouil M, Tallot M, Schwartz CE, et al. GM3 synthase deficiency in non-Amish patients. Genet Med. 2022;24:492–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Mu D, Yang Y, Liu Y, Shen Y, Liu H, Wang J. Identification of a novel ST3GAL5 variant in a Chinese boy with GM3 synthase deficiency and literature review of variants in the ST3GAL5 gene. Orphanet J Rare Dis. 2024;19:423.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudy N, Aoki K, Ananth A, Holloway L, Skinner C, Hurst A, et al. Compound heterozygous variants within two conserved sialyltransferase motifs of ST3GAL5 cause GM3 synthase deficiency. JIMD Rep. 2023;64:138–45.

    PubMed 

    Google Scholar
     

  • Abdulkareem AA, Shirah BH, Naseer MI. Whole exome sequencing reveals a novel homozygous variant in the ganglioside biosynthetic enzyme, ST3GAL5 gene in a Saudi family causing salt and pepper syndrome. Genes (Basel). 2023;14:354.

  • Manoochehri J, Dastgheib SA, Khamirani HJ, Mollaie M, Sharifi Z, Zoghi S, et al. A novel frameshift pathogenic variant in ST3GAL5 causing salt and pepper developmental regression syndrome (SPDRS): A case report. Hum Genome Var. 2021;8:33.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meyyazhagan A, Orlacchio A. Hereditary spastic paraplegia: an update. Int J Mol Sci. 2022;23:1697.

  • Shribman S, Reid E, Crosby AH, Houlden H, Warner TT. Hereditary spastic paraplegia: from diagnosis to emerging therapeutic approaches. Lancet Neurol. 2019;18:1136–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Inamori KI, Nakamura K, Shishido F, Hsu JC, Nagafuku M, Nitta T, et al. Functional evaluation of novel variants of B4GALNT1 in a patient with hereditary spastic paraplegia and the general population. Front Neurosci. 2024;18:1437668.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alecu JE, Ohmi Y, Bhuiyan RH, Inamori KI, Nitta T, Saffari A, et al. Functional validation of novel variants in B4GALNT1 associated with early-onset complex hereditary spastic paraplegia with impaired ganglioside synthesis. Am J Med Genet A. 2022;188:2590–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dad R, Walker S, Scherer SW, Hassan MJ, Alghamdi MD, Minassian BA, et al. Febrile ataxia and myokymia broaden the SPG26 hereditary spastic paraplegia phenotype. Neurol Genet. 2017;3:e156.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wakil SM, Monies DM, Ramzan K, Hagos S, Bastaki L, Meyer BF, et al. Novel B4GALNT1 mutations in a complicated form of hereditary spastic paraplegia. Clin Genet. 2014;86:500–1.

    CAS 
    PubMed 

    Google Scholar
     

  • Wilkinson PA, Simpson MA, Bastaki L, Patel H, Reed JA, Kalidas K, et al. A new locus for autosomal recessive complicated hereditary spastic paraplegia (SPG26) maps to chromosome 12p11.1-12q14. J Med Genet. 2005;42:80–2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bhuiyan RH, Ohmi Y, Ohkawa Y, Zhang P, Takano M, Hashimoto N, et al. Loss of Enzyme Activity in Mutated B4GALNT1 Gene Products in Patients with Hereditary Spastic Paraplegia Results in Relatively Mild Neurological Disorders: Similarity with Phenotypes of B4galnt1 Knockout Mice. Neuroscience. 2019;397:94–106.

    CAS 
    PubMed 

    Google Scholar
     

  • Giacomozzi S, Bonan L, La Morgia C, Carbonelli M, Santucci M, Isidori F, et al. Expanding the clinical spectrum of SPG26: a case report and review of B4GALNT1-associated hereditary spastic paraplegia. Mov Disord Clin Pract. 2025. https://doi.org/10.1002/mdc3.70062. Online ahead of print.

  • Yu W, He J, Liu X, Wu J, Cai X, Zhang Y, et al. Clinical features and genetic spectrum of Chinese patients with hereditary spastic paraplegia: A 14-year study. Front Genet. 2023;14:1085442.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Incecik F, Herguner OM, Bozdogan ST. Hereditary spastic paraplegia type 26 with a novel mutation in B4GALNT1 gene and literature review of the clinical features. J Paediatr Neurosci. 2023;18:354–6.


    Google Scholar
     

  • Wang C, Zhang YJ, Xu CH, Li D, Liu ZJ, Wu Y. The investigation of genetic and clinical features in patients with hereditary spastic paraplegia in central-Southern China. Mol Genet Genom Med. 2021;9:e1627.

    CAS 

    Google Scholar
     

  • Koh S, Lee SE, Jung WS, Choi JW, Lee JS, Hong JM, et al. Predictors of early neurological deterioration in stroke due to vertebrobasilar occlusion. Front Neurol. 2021;12:696042.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rose L, Hall K, Tang S, Hasadsri L, Kimonis V. Homozygous B4GALNT1 mutation and biochemical glutaric acidemia type II: a case report. Clin Neurol Neurosurg. 2020;189:105553.

    PubMed 

    Google Scholar
     

  • Indellicato R, Domenighini R, Malagolini N, Cereda A, Mamoli D, Pezzani L, et al. A novel nonsense and inactivating variant of ST3GAL3 in two infant siblings suffering severe epilepsy and expressing circulating CA19.9. Glycobiology. 2020;30:95–104.

    CAS 
    PubMed 

    Google Scholar
     

  • Monies DA, Ibrahim J, Elbardisy N, Abouelhoda H, Meyer M, Alkuraya BF. F. S. Identification of a novel lethal form of autosomal recessive ichthyosis caused by UDP-glucose ceramide glucosyltransferase deficiency. Clin Genet. 2018;93:1252–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Jennemann R, Sandhoff R, Langbein L, Kaden S, Rothermel U, Gallala H, et al. Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J Biol Chem. 2007;282:3083–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Yamashita T, Wada R, Sasaki T, Deng C, Bierfreund U, Sandhoff K, et al. A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA. 1999;96:9142–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sheikh KA, Sun J, Liu Y, Kawai H, Crawford TO, Proia RL, et al. Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci USA. 1999;96:7532–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, et al. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci USA. 1996;93:10662–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inamori KI, Inokuchi JI. Ganglioside GM3 synthase deficiency in mouse models and human patients. Int J Mol Sci. 2022;23:5368.

  • Yoshikawa M, Go S, Takasaki K, Kakazu Y, Ohashi M, Nagafuku M, et al. Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci USA. 2009;106:9483–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA. 2003;100:3445–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inamori KI, Ito H, Tamura Y, Nitta T, Yang X, Nihei W, et al. Deficient ganglioside synthesis restores responsiveness to leptin and melanocortin signaling in obese KKAy mice. J Lipid Res. 2018;59:1472–81.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nordstrom V, Willershauser M, Herzer S, Rozman J, von Bohlen Und Halbach O, Meldner S, et al. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis. PLoS Biol. 2013;11:e1001506.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, et al. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA. 2007;104:13678–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshikawa M, Go S, Suzuki S, Suzuki A, Katori Y, Morlet T, et al. Ganglioside GM3 is essential for the structural integrity and function of cochlear hair cells. Hum Mol Genet. 2015;24:2796–807.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14:653–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins BE, Yang LJ, Mukhopadhyay G, Filbin MT, Kiso M, Hasegawa A, et al. Sialic acid specificity of myelin-associated glycoprotein binding. J Biol Chem. 1997;272:1248–55.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang LJ, Zeller CB, Shaper NL, Kiso M, Hasegawa A, Shapiro RE, et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc Natl Acad Sci USA. 1996;93:814–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novarino G, Fenstermaker AG, Zaki MS, Hofree M, Silhavy JL, Heiberg AD, et al. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 2014;343:506–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bharathi SS, Zhang BB, Paul E, Zhang Y, Schmidt AV, Fowler B, et al. GM3 synthase deficiency increases brain glucose metabolism in mice. Mol Genet Metab. 2022;137:342–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang FL, Wang J, Itokazu Y, Yu RK. Enhanced susceptibility to chemoconvulsant-induced seizures in ganglioside GM3 synthase knockout mice. ASN Neuro. 2020;12:1759091420938175.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopez PH, Aja S, Aoki K, Seldin MM, Lei X, Ronnett GV, et al. Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance. Glycobiology. 2017;27:129–39.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sturgill ER, Aoki K, Lopez PH, Colacurcio D, Vajn K, Lorenzini I, et al. Biosynthesis of the major brain gangliosides GD1a and GT1b. Glycobiology. 2012;22:1289–301.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoo SW, Motari MG, Susuki K, Prendergast J, Mountney A, Hurtado A, et al. Sialylation regulates brain structure and function. FASEB J. 2015;29:3040–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takamiya K, Yamamoto A, Furukawa K, Zhao J, Fukumoto S, Yamashiro S, et al. Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone. Proc Natl Acad Sci USA. 1998;95:12147–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu Y, Su Y, Wiznitzer M, Epifano O, Ladisch S. Ganglioside depletion and EGF responses of human GM3 synthase-deficient fibroblasts. Glycobiology. 2008;18:593–601.

    CAS 
    PubMed 

    Google Scholar
     

  • Shevchuk NA, Hathout Y, Epifano O, Su Y, Liu Y, Sutherland M, et al. Alteration of ganglioside synthesis by GM3 synthase knockout in murine embryonic fibroblasts. Biochim Biophys Acta. 2007;1771:1226–34.

    CAS 
    PubMed 

    Google Scholar
     

  • Svennerholm L, Bostrom K, Jungbjer B, Olsson L. Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem. 1994;63:1802–11.

    CAS 
    PubMed 

    Google Scholar
     

  • Hadaczek P, Wu G, Sharma N, Ciesielska A, Bankiewicz K, Davidow AL, et al. GDNF signaling implemented by GM1 ganglioside; failure in Parkinson’s disease and GM1-deficient murine model. Exp Neurol. 2015;263:177–89.

    CAS 
    PubMed 

    Google Scholar
     

  • Wu G, Lu ZH, Kulkarni N, Ledeen RW. Deficiency of ganglioside GM1 correlates with Parkinson’s disease in mice and humans. J Neurosci Res. 2012;90:1997–2008.

    CAS 
    PubMed 

    Google Scholar
     

  • Huebecker M, Moloney EB, van der Spoel AC, Priestman DA, Isacson O, Hallett PJ, et al. Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson’s disease. Mol Neurodegener. 2019;14:40.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seyfried TN, Choi H, Chevalier A, Hogan D, Akgoc Z, Schneider JS. Sex-related abnormalities in substantia nigra lipids in Parkinson’s disease. ASN Neuro. 2018;10:1759091418781889.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider JS. Altered expression of genes involved in ganglioside biosynthesis in substantia nigra neurons in Parkinson’s disease. PLoS One. 2018;13:e0199189.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sonnino S. The relationship between depletion of brain GM1 ganglioside and Parkinson’s disease. FEBS Open Bio. 2023;13:1548–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar