• Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE. Genetic and environmental influences on serum lipid levels in twins. N Engl J Med. 1993;328:1150–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sinnott-Armstrong N, Tanigawa Y, Amar D, Mars N, Benner C, Aguirre M, et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat Genet. 2021;53:185–94.

    CAS 
    PubMed 

    Google Scholar
     

  • Graham SE, Clarke SL, Wu KHH, Kanoni S, Zajac GJM, Ramdas S, et al. The power of genetic diversity in genome-wide association studies of lipids. Nature. 2021;600:675–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kalra A, Jose AP, Prabhakaran P, Kumar A, Agrawal A, Roy A, et al. The burgeoning cardiovascular disease epidemic in Indians—perspectives on contextual factors and potential solutions. Lancet Regional Health—Southeast Asia. 2023;12:100156.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Misra A, Khurana L, Isharwal S, Bhardwaj S. South Asian diets and insulin resistance. Br J Nutr. 2008;101:465–73.

    PubMed 

    Google Scholar
     

  • Braun TR, Been LF, Singhal A, Worsham J, Ralhan S, Wander GS, et al. A replication study of GWAS-derived lipid genes in asian indians: the chromosomal region 11q23.3 harbors loci contributing to triglycerides. PLoS One. 2012;7:e37056.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arvind P, Nair J, Jambunathan S, Kakkar VV, Shanker J. CELSR2–PSRC1–SORT1 gene expression and association with coronary artery disease and plasma lipid levels in an Asian Indian cohort. J Cardiol. 2014;64:339–46.

    PubMed 

    Google Scholar
     

  • Walia GK, Gupta V, Aggarwal A, Asghar M, Dudbridge F, Timpson N, et al. Association of common genetic variants with lipid traits in the indian population. PLoS One. 2014;9:e101688.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandesh K, Prasad G, Giri AK, Kauser Y, Upadhyay M, Basu A, et al. Genome-wide association study of blood lipids in Indians confirms universality of established variants. J Hum Genet. 2019;64:573–87.

    PubMed 

    Google Scholar
     

  • Chakraborty S, Prasad G, Marwaha R, Basu A, Tandon N, Bharadwaj D. Comparison of plasma adipocytokines & C-reactive protein levels in healthy schoolgoing adolescents from private & government-funded schools of Delhi, India. Indian J Med Res. 2020;151:47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bandesh K, Jha P, Giri AK, Marwaha RK, Scaria V, Tandon N, et al. Normative range of blood biochemical parameters in urban Indian school-going adolescents. PLoS One. 2019;14:e0213255.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nair JM, Chauhan G, Prasad G, Bandesh K, Giri AK, Chakraborty S, et al. Mapping the landscape of childhood obesity: genomic insights and socioeconomic status in Indian school‐going children. Obesity. 2025;33:754–65.

    PubMed 

    Google Scholar
     

  • Taliun D, Harris DN, Kessler MD, Carlson J, Szpiech ZA, Torres R, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature. 2021;590:290–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchsberger C, Abecasis GR, Hinds DA. minimac2: faster genotype imputation. Bioinformatics. 2015;31:782–4.

    CAS 
    PubMed 

    Google Scholar
     

  • Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin SH, Brown DW, Machiela MJ. LDtrait: an online tool for identifying published phenotype associations in linkage disequilibrium. Cancer Res. 2020;80:3443–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 2017;8:1826.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47:1236–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Cingolani P, Patel VM, Coon M, Nguyen T, Land SJ, Ruden DM, et al. Using drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front Genet. 2012;3:35.

  • Mbatchou J, Barnard L, Backman J, Marcketta A, Kosmicki JA, Ziyatdinov A, et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat Genet. 2021;53:1097–103.

    CAS 
    PubMed 

    Google Scholar
     

  • Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, et al. Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 2017;49:1758–66.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sollis E, Mosaku A, Abid A, Buniello A, Cerezo M, Gil L, et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 2023;51:D977–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021;49:D605–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Mirhafez SR, Avan A, Khatamianfar S, Ghasemi F, Moohebati M, Ebrahimi M, et al. There is an association between a genetic polymorphism in the ZNF259 gene involved in lipid metabolism and coronary artery disease. Gene. 2019;704:80–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang J, Guo Y, Zhao X, Pang J, Pan C, Wang J, et al. The role of aldehyde dehydrogenase 2 in cardiovascular disease. Nat Rev Cardiol. 2023;20:495–509.

    PubMed 

    Google Scholar
     

  • Samani NJ, Braund PS, Erdmann J, Götz A, Tomaszewski M, Linsel-Nitschke P, et al. The novel genetic variant predisposing to coronary artery disease in the region of the PSRC1 and CELSR2 genes on chromosome 1 associates with serum cholesterol. J Mol Med. 2008;86:1233–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Huang Y, Mahley RW. Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72:3–12.

    CAS 
    PubMed 

    Google Scholar
     

  • Fuior EV, Gafencu AV. Apolipoprotein C1: its pleiotropic effects in lipid metabolism and beyond. Int J Mol Sci. 2019;20:5939.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang NV, Chao JY, Garton KA, Tran T, King SM, Orr J, et al. TOMM40 regulates hepatocellular and plasma lipid metabolism via an LXR-dependent pathway. Mol Metab. 2024;90:102056.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fan Y, Lu H, Guo Y, Zhu T, Garcia-Barrio MT, Jiang Z, et al. Hepatic transmembrane 6 superfamily member 2 regulates cholesterol metabolism in mice. Gastroenterology. 2016;150:1208–18.

    CAS 
    PubMed 

    Google Scholar
     

  • Boonvisut S, Nakayama K, Makishima S, Watanabe K, Miyashita H, Lkhagvasuren M, et al. Replication analysis of genetic association of the NCAN-CILP2 region with plasma lipid levels and non-alcoholic fatty liver disease in Asian and Pacific ethnic groups. Lipids Health Dis. 2016;15:8.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 2010;466:707–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou L, He M, Mo Z, Wu C, Yang H, Yu D, et al. A genome wide association study identifies common variants associated with lipid levels in the Chinese Population. PLoS One. 2013;8:e82420.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim HK, Anwar MA, Choi S. Association of BUD13-ZNF259-APOA5-APOA1-SIK3 cluster polymorphism in 11q23.3 and structure of APOA5 with increased plasma triglyceride levels in a Korean population. Sci Rep. 2019;9:8296.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Santos M, Mendonca MI, Sa D, Temtem M, Sousa AC, Henriques E, et al. ZNF259 rs964184 variant is associated with dyslipidemia and coronary artery disease in the young population. Eur Heart J. 2022;43 Supplement_2.

  • Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science (1979). 2007;316:1331–6.

    CAS 

    Google Scholar
     

  • Wang J, Ban MR, Zou GY, Cao H, Lin T, Kennedy BA, et al. Polygenic determinants of severe hypertriglyceridemia. Hum Mol Genet. 2008;17:2894–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Li Y, Liu S, Wang YT, Min H, Adi D, Li XM, et al. TBL2 methylation is associated with hyper-low-density lipoprotein cholesterolemia: a case-control study. Lipids Health Dis. 2020;19:186.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng CF, Ku HC, Lin H. PGC-1α as a pivotal factor in lipid and metabolic regulation. Int J Mol Sci. 2018;19:3447.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Folmer DE, Elferink RPJO, Paulusma CC. P4 ATPases—Lipid flippases and their role in disease. Biochim et Biophys Acta (BBA) – Mol Cell Biol Lipids. 2009;1791:628–35.

    CAS 

    Google Scholar
     

  • Chen P, Li Z, Nie J, Wang H, Yu B, Wen Z, et al. MYH7B variants cause hypertrophic cardiomyopathy by activating the CaMK-signaling pathway. Sci China Life Sci. 2020;63:1347–62.

    PubMed 

    Google Scholar
     

  • Joseph JS, Anand K, Malindisa ST, Fagbohun OF. Role of CaMKII in the regulation of fatty acids and lipid metabolism. Diab Metab Syndrome: Clin Res Rev. 2021;15:589–94.

    CAS 

    Google Scholar
     

  • von Wilamowitz-Moellendorff A, Hunter RW, García-Rocha M, Kang L, López-Soldado I, Lantier L, et al. Glucose-6-phosphate–mediated activation of liver glycogen synthase plays a key role in hepatic glycogen synthesis. Diabetes. 2013;62:4070–82.


    Google Scholar
     

  • Bingyu W, Xi Y, Jiangfang L, Jianqing Z. Key chromatin regulator-related genes associated with the risk of coronary artery disease regulate the expression of HCFC1, RNF8, TNP1 and SET. Heliyon. 2024;10:e28685.

    PubMed 
    PubMed Central 

    Google Scholar